Big data now, scientific revolutions later

Sequence databases are not the only repositories that see exponential growth. The internet helps companies to collect information in unprecedented orders of magnitude, which has spurned the development of new software solutions. “Big data” is the term that stuck with it and blew life into the data analysis. Widespread coverage ensued, including a series of blog posts published by the New York Times. Data produced by sequencing is big: Current hard drives are too slow for raw data acquisition in modern sequencers and we have to ship the discs because we lack the bandwidth to transmit the data via the internet. But we process them only once and in a couple of years from now they can be reproduced with ease.

Large-scale data collection is once again hailed as the next big thing and spiced with calls for a revolution in science. In 2008, Wired even announced the end of theory. Experimental scientists make good use of hypotheses and targeted experiments under the scientific method the last time I checked though. A TEDMED12 presentation by Atul Butte, bioinformatician at Stanford is symptomatic in it’s revolutionary language and caused concern with Florian Markowetz, bioinformatician at the Cancer Center in Cambdridge, UK (and a Facebook friend of mine). Florian complains and explains that the quantitative changes in the data does not lead to a new quality of science and calls for better theories and model development. He’s right, although the issue of data acquisition and source material had deserved more attention (what can you expect from a mathematician).

Big data

The part of the data we care about in biology is quite moderate but note that the computing resources of the BGI are in league with the Large Hadron Collider.

We don’t know what to expect from e.g. exome sequencing for a particular disease and the only way to find out is to do the experiment, look at the data, come up with guestimates and confirm your finding in the next round. Current data gathering and analysis projects in the life sciences won’t be classified as big data by the next sweep of scientists anyway. They are mere community technology exploration projects using ad hoc solutions.

7 thoughts on “Big data now, scientific revolutions later

  1. Pingback: The meeting of the 1000 exomes | EuroEPINOMICS

  2. Pingback: Reinventing a consortium – the RES data sharing policy | Beyond the Ion Channel

  3. Pingback: SpotOn London, Open Access and the Higgs boson | Beyond the Ion Channel

  4. Pingback: “Dark social” or “Who is afraid of email?” | Beyond the Ion Channel

  5. Pingback: Copy number variations and the forgotten epilepsy phenotypes | Beyond the Ion Channel

  6. Pingback: 2013 in review: top three lists and the gene finding of the year | Beyond the Ion Channel

  7. Pingback: Why you need to know what EGI stands for | Beyond the Ion Channel

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s