SCN1A – This is what you need to know in 2014

Update. As information on the epilepsies caused by SCN1A mutations are amongst our most frequently read posts, we thought that a quick update on the state-of-the art regarding SCN1A would be timely. These are the ten things about SCN1A that you should known in 2014. Continue reading

How metabolism alters epigenetics

CNS metabolism Neuronal activity accounts for 80% of the brain’s energy consumption. Blood-borne glucose is an essential energy source for the adult human brain. Both neurons and astrocytes take up glucose via the cell-specific transporters GLUT1 and GLUT3. Upon increased demand neurons ability to take up glucose is limited and lactate provided by astrocytes becomes the primary oxidative fuel. Under certain conditions the brain can also utilize acetoacetate, b-hydroxybutyrate and acetone (ketone bodies) derived from fatty acids as alternative energy source. Neurons metabolize ketone bodies to Acetyl-CoA, which is further oxidized through the TCA cycle. High circulating levels of ketone bodies are known to protect the brain. Ketone bodies also prevent seizures in GLUT1 difficiency syndrome and are important for brain development, but cellular and molecular mechanisms underlying the protective effect of ketone bodies are not yet fully clear. In the following I discuss the presumable link of metabolism with epigenetic changes and implications in brain function.

Continue reading

Papers of the week – Comorbidity clusters, Epigenomic annotation & exome-based TDT

Finally, I have finished my PhD. Bild1After focussing on writing and defending my thesis for the last few months, I am now ready to focus on research again. Because I am understandably in a very happy mood, this week’s selection of papers also reflects the fun aspects of science beside neurogenetics and genomics. Continue reading

2013 in review: top three lists and the gene finding of the year

Gene of the year. Let’s take a minute to look back at the very busy year of 2013. There were major advances in many areas of epilepsy genetics. First and foremost, massive (and I mean massive) progress has been made in the genetics of the epileptic encephalopathies, where de novo mutations have been identified as a major source of genetic morbidity. Secondly, the new technologies have made it possible to identify several novel genes for various epilepsy types. Out of these genes, we have again selected the most important finding in 2013. And the gene finding of the year is… Continue reading

The Pareto Principle versus the Long Tail

80/20. In every scientist’s life there is a point when someone points out to you that you should not waste your time and that you should work more efficiently. If that someone, be it your boss, supervisor or close friend with a superior track record, is inclined to resort to management language, you might hear about the Pareto Principle or the Eisenhower matrix. Follow me on a brief motivational blog post that your boss probably doesn’t want you to read – telling you why it is good to keep doing what you are doing. Continue reading

This week on the ‘omics blogs

New format. We have mentioned earlier that we wanted to try a few new formats on this blog including providing you with a summary of what happened on the web this week in neurogenetics. Plus a little update on what we are working on currently.

Continue reading