Publications of the week: genetics of Infantile Spasms, CERS1, DYRK1A, and hyaluronan

This week in epilepsy genetics. The following publications might be relevant for you, as they demonstrate what happened in the field of epilepsy genetics in the last two weeks. The publications range from basic science studies in extracellular space to novel gene discoveries. I have added a brief comment to each of these studies. Continue reading

Microcephaly, WDR62, and how to analyze recessive epilepsy families

Success rate. What is in an exome? There are lots of rare and unknown variants that are hard to make sense of unless we can ask a specific question or have further data to limit the number of genes that we look at. Genetic studies in recessive diseases with limited candidate genes to consider might represent one of the most straightforward cases. In a recent paper in BMC Neurology, the genetic cause of a recessive epilepsy/intellectual disability syndrome in a consanguineous family presenting with primary microcephaly was solved using a single exome of an affected individual. Was this just lucky or can this strategy be applied to any recessive family with a reasonable chance? Continue reading

G proteins, GNAO1 mutations and Ohtahara Syndrome

G proteins. Intracellular signaling in neurons can occur through various mechanisms including so-called second messengers. G proteins constitute an important part of the signaling cascade that translates the signal from membrane-bound receptors. On neurons, GABA-B receptors or alpha-2 adrenergic receptors use signal transduction through the so-called G alpha-o proteins, which are particularly abundant in the CNS and encoded by the GNAO1 gene. Now a recent paper in the American Journal of Human Genetics describes de novo mutations in Ohtahara Syndrome and movement disorders. Continue reading

CASK aberrations in Ohtahara syndrome

Suppression-burst. Ohtahara Syndrome is a rare epileptic encephalopathy with onset in the first weeks of life. The typical EEG feature of Ohtahara Syndrome is suppression-burst activity, suggesting a profound disruption of cerebral function. Ohtahara Syndrome can be caused by severe brain malformations and neurometabolic disorders. In addition, mutations in ARX and STXBP1 are known causes of Ohtahara Syndrome. In a recent publication in Epilepsia, genetic alterations in CASK were identified in patients with Ohtahara Syndrome and cerebellar hypoplasia. Given that CASK mutations are the known cause for a complex X-chromosomal disorder, this report provides us with an interesting example of what happens when genes underlying distinct clinical dysmorphology syndromes cross over to the epilepsies. Continue reading