Three reasons why we need a new genetic literacy to understand epilepsy

ILAE Genetic Commission weekly. As you might already know, Beyond the Ion Channel has become the official blog of the Genetics Commission of the International League Against Epilepsy. Starting with this post, we would like to publish a weekly post about the issues relevant to what the ILAE-GC does. We’ll kick off this new segment by telling you about the reasons behind the Genetic Literacy Series that is currently in the works. This series of 10 papers will appear this year and next in Epilepsia. Continue reading

A polygenic trickle of rare disruptive variants in schizophrenia

Polygenic. Schizophrenia is a complex neurodevelopmental disorder that is assumed to be caused by a mixture of genetic and non-genetic factors. The genetic component in schizophrenia is thought to be polygenic, i.e. due to the interaction of multiple genetic factors. Rare variants may play a particular role in this presumable polygenic genetic architecture, but so far this component of the genetic morbidity has been hard to pin down. Now, a recent study in Nature explores the role of rare, disruptive mutations in schizophrenia using large-scale population-based exome sequencing. Let’s find out about a new level of exome-wide honesty and why even a gene with 10 disruptive mutations in cases and none in controls is only mentioned in passing. Continue reading

Papers of the week – DEPDC5, a “female protective model” and rescued KCNT1 mutations

In final week before our EuroEPINOMICS Bild1bioinformatics workshop in Leuven people get a little busy and start reading up on all sorts of things. Accordingly, this week’s papers come from all areas of genetics and life science, including three studies in Annals of Neurology on epilepsy genetics.

Continue reading

GPHN deletions in IGE and mutation-dependent recessive inheritance

Bild1Living in Cologne is a little tough at the moment. Currently, we are in the middle of the Cologne Carnival, the world’s oldest carnival, which started in 1829. Until the upcoming Wednesday the entire city is one big festival. In addition to the 1 million Cologne citizens probably another million tourists will join. Due to this (positive) distraction I will write less than usual. However, I still consider this week’s publications noteworthy. Continue reading

Papers of the week – 15q11 duplications, Olig1 & Automated decision-making

Bild1

A productive week in epilepsy genetics.  Scientists and editors were certainly busy this week reporting novel variants and deletions as well the experimental and statistical advances for their interpretation.

A de novo GRIN2A missensmutation in early-onset epileptic encephalopathy. We and others have associated variants affecting the GRIN2A gene with a range of childhood focal epilepsy syndromes. Continue reading

The surprising truth about your motivation in epilepsy genetics – 2014 update

Update. I re-read one of my older posts when I went through Dennis’ recent discussion on the lessons learned during his PhD, which also included his advice on how to keep your motivation up. Two years ago, I actually wondered where motivation for science comes from in general. Are we driven largely by egoistic motives like money or fame, or are there different factors at play? I am re-blogging one of our old posts from 2012 with minor 2014 updates. These were the answers that I came up with back then. I think they are still relevant. Continue reading

Papers of the week – Encephalitis-antibodies, FAN1, Art and Parent-of-Origin Effects

Dennis' paper of the week

Biggest surprise this week: Imprinted genes interact with non-imprinted genes frequently. But first sequencing reports, statistical frameworks for rare variants analyzes and an impressive translational result.

A novel encephalitis with seizures and the analysis of the effects of antibodies. In their study published in LANCET NEUROLOGY Petit-Pedrol and coworkers characterized serum and CSF samples for antigens in 140 patients with encephalitis, seizures or status epilepticus as well as antibodies to unknown neurophil antigens. High titres of serum and CSF GABAA receptor antibodies are reported to be associated with a severe form of encephalitis with seizures, refractory status epilepticus, or both, which could be exploited for immunotherapy with 15 patients.

Continue reading

Papers of the week – WES Meta analysis, Dravet mice & large sequencing studies

Bild1Time flies – already thursday night again.  Here are updates on study designs to identify rare pathogenic mutations in neurodevelopment diseases, an epilepsy animal model study as well as novel statistical frameworks for large genetic screens.

The placebo effect. In a recent paper in Science Translational Medicine the group of Kam-Hansen investigated the effect of altered placebo and drug labeling changes and its outcome in patients with episodic migraine. Their results suggest that the placebo accounted for more than 50% of the drug effect.

Continue reading

Modifier genes in Dravet Syndrome: where to look and how to find them

Converging thoughts. During late 2013, I had several unrelated discussions about the possible role of genetic modifiers of SCN1A in Dravet Syndrome. To some extent, SCN1A is a paradox. One the one hand, the connection between Dravet Syndrome and SCN1A is one of the clearest connections between gene and disease that we see in genetic epilepsies. On the other hand, we see a remarkable phenotypic heterogeneity in families, and some presumably pathogenic SCN1A variants can also be identified in unaffected control individuals. This leaves us with the question whether there are genetic modifiers in Dravet Syndrome that might help provide some insight into additional mechanisms of disease. This post is a collection of 10 individual thoughts that emerged during the discussions last year. Continue reading

Papers of the week – Copy Number Variations

Dennis' paper of the weekVariations on Copy Numbers. In the third issue of our series on the papers of the week I will focus on the detection and annotation of the most common form of structural variation encountered in genomes. Deletions, duplications and inversions are frequent events, which are surprisingly hard to deal with using sequencing-based tools. Hence, this is an area of active development.

Continue reading