Living in a post-linkage world, craving knowledge

Genomics meets linkage. This blog post is about family studies in epilepsy genetics. One of my tasks for the next two months is to write the “Trilateral Grant” – we were invited to submit a full proposal for a German-Israeli-Palestinian grant by the German Research Foundation (DFG) on the genetics of familial epilepsies. As keeping up our blogging schedule will be my other big task for the coming months, I thought that I could combine both and explore some topics regarding family studies on this blog. Let’s start with a sobering fact – small dominant families remain difficult to solve, not because of too little but rather too much genetic data. Continue reading

An inconvenient truth – segregation of monogenic variants in small families

Climate change. In the era of exome and genome sequencing, it might be worthwhile revisiting the merit of family studies in epilepsy research. Seizure disorders are known to have a highly diverse genetic architecture. When singleton studies identify a single, unique gene finding, this discovery usually does not provide much information about the potential causal role of the variant given the high degree of genomic noise. In contrast, family studies are usually considered more robust, as segregation of variants can be traced. Here is the inconvenient truth: unless the family is very large, segregation of possibly monogenic variants adds little information given the vast amount of variants present in our genomes. Continue reading

Recessive mutations in autism – the return of hidden metabolic disorders

My wrong guesses of 2012. Two weeks ago during a presentation, I had to admit that there is little evidence for a large contribution of recessive or compound heterozygous mutations in epileptic encephalopathies. At the beginning of 2012, I had initially suggested that recessive or compound heterozygous mutation of known neurometabolic disorders could be identified through exome sequencing in sporadic epileptic encephalopathies. However, as of 2013, there is little evidence for this in our data or the data from other consortia. Now, two papers in Cell suggest a significant contribution of recessive mutations in autism including a revival of the “hidden neurometabolic hypothesis”. Continue reading