The age of mega-genomics, type 2 diabetes, and protective variants in SLC30A8

Sequence first. There are larger genetic studies but not too many. In a recent study in Nature Genetics, roughly 150,000 individuals were genotyped to assess the importance of rare, disruptive variants in SLC30A8 in type 2 diabetes. This genomic tour de force was made possible by available and curated databases that could be tapped to extract the necessary genetic information. Also, this study highlights some of the surprises that we can expect by mining the human genome for disease-related information. Rare, disruptive variants in SLC30A8 protect against type 2 diabetes. Let’s review why these rare, protective genetic factors might be particularly important for biomedical research and what kind of studies we need to identify them. Continue reading

Mining GWAS mountains for missing heritability

What is missing? The catchy term “missing heritability” refers to a long-standing issue in human genetics that is particularly relevant to common diseases that are thought to have complex genetic architecture. Even though we know several thousands of risk factors for common diseases, the sum of all these risk factors only explains a small proportion of the genetic risk for disease. Where is all the remaining genetic disease risk hidden? A recent publication in PLOS Genetics suggests that known association peaks in genome-wide association studies (GWAS) may harbor more than one risk variant, turning GWAS peaks into mountain ranges. Also, this publication provides an interesting state-of-the art review on the role of common and rare variants with respect to missing heritability. Let’s turn back the clock and start with the decade-old debate on common versus rare variant models of human disease. Continue reading

Modifier genes in Dravet Syndrome: where to look and how to find them

Converging thoughts. During late 2013, I had several unrelated discussions about the possible role of genetic modifiers of SCN1A in Dravet Syndrome. To some extent, SCN1A is a paradox. One the one hand, the connection between Dravet Syndrome and SCN1A is one of the clearest connections between gene and disease that we see in genetic epilepsies. On the other hand, we see a remarkable phenotypic heterogeneity in families, and some presumably pathogenic SCN1A variants can also be identified in unaffected control individuals. This leaves us with the question whether there are genetic modifiers in Dravet Syndrome that might help provide some insight into additional mechanisms of disease. This post is a collection of 10 individual thoughts that emerged during the discussions last year. Continue reading

The genetics of treatment response in newly diagnosed epilepsy

Two questions. There are two main questions that we would like to answer with genetics in the field of epilepsy. First, are there genetic risk factors for epilepsies and if so, what are they? Secondly, are there genetic factors that help us understand how patients react to treatment, i.e. are there genes that predispose to response to antiepileptic drugs or that might be associated with side effects? While we have made much progress in answering the first question by identifying many epilepsy genes, there have been few answers for the second question, the field of pharmacogenomics. Now, a recent study in Human Molecular Genetics looks at potential genetic risk factors for the response to antiepileptic drugs in newly treated epilepsy. This is a study that needed to be performed and that we were waiting for. Continue reading

Guilt by association: SCN1A in Temporal Lobe Epilepsy

GWAS. Genome-wide association studies investigate the association of common genetic variants with disease in large patient samples. While this approach has been very successful in many other diseases, the results in epilepsy research have been less convincing. Given the complexity of epilepsy phenotypes, selection of the right epilepsy phenotype has been an ongoing debate. Now, a recent study in Brain finds an intronic variant of the SCN1A gene that is associated with Temporal Lobe Epilepsy (TLE), the most common epilepsy in man. Interestingly, the association with SCN1A seems to be specific for only a particular subtype of focal epilepsies. Continue reading

Spooky, scary, phantom heritability

Twilight zone. Admittedly, Halloween is already a few weeks behind us, but I was reminded of it a week ago when I stumbled across the concept of phantom heritability. And guess what, this concept has already been out there since early 2012 and, scarily enough, we didn’t notice it. So what is this mysterious conspiracy behind phantom heritability? Well, it’s about things out there beyond our understanding and the fact that we might already know more than we think we know. But be warned, if you decide to read this post, your understanding of genetic architecture might be changed forever. And there is no going back. Boo! Continue reading