A PhD in genomics – lessons learned

This is it! With finishing my PhD I have become an “adult” member of the scientific Graduierungcommunity. I grew out of a bachelor in biochemistry on transfection methods in neuronal cell lines, a research semester in Canberra with focus on B-cell immunology and master into a  PhD in epilepsy genomics. I was involved in the EPICURE IGE copy number projects and recently my work changed to the analysis of rare variants in RE and IGE in the EUROepinomics framework. During this time I was involved in the identification of variants in RBFOX genes and GRIN2A as well as other risk factors which are currently in review. I share my experience and thoughts and hope they help others who are about to or have just started their thesis. The aspects reflect my personal view and some are specific for graduation in disease genomics. Continue reading

An inconvenient truth – segregation of monogenic variants in small families

Climate change. In the era of exome and genome sequencing, it might be worthwhile revisiting the merit of family studies in epilepsy research. Seizure disorders are known to have a highly diverse genetic architecture. When singleton studies identify a single, unique gene finding, this discovery usually does not provide much information about the potential causal role of the variant given the high degree of genomic noise. In contrast, family studies are usually considered more robust, as segregation of variants can be traced. Here is the inconvenient truth: unless the family is very large, segregation of possibly monogenic variants adds little information given the vast amount of variants present in our genomes. Continue reading

Navigating the epilepsiome – live from Tübingen

2D. I am writing this post during our EuroEPINOMICS meeting in Tübingen listening to presentation from CoGIE, the EuroEPINOMICS project working on IGE/GGE and Rolandic Epilepsies and RES, the project on rare epilepsies. At some point during the afternoon, I made my selection for the best graph during the presentations today – an overview of the conservation space of epilepsy genes. Continue reading

Three things you didn’t know about epilepsy and genes

Fall colors. Just a brief summary of how this post originated. Eckernförde is a small city north of Kiel and the weekly Sunday destination of my daughter and me because of the wave pool.  This past Sunday, daylight saving and the fact that she didn’t like her dinner had confused the little girl, and we had been awake since 4AM. As a consequence, she fell asleep on the way, and I kept driving to let her sleep. We made it as far as Haddeby, and I used this time to mentally put a post together that I had been planning for some time. These are the three things that are often misunderstood with regards to epilepsy and genes. Continue reading

Identifying core phenotypes – epilepsy, ID and recurrent microdeletions

Triad. There are three microdeletions in particular that increase the risk for the Idiopathic/Genetic Generalized Epilepsies (IGE/GGE). This triad includes microdeletions at 15q13.3, 16p13.11 and 15q11.2, which are hotspot deletions arising from the particular architecture of the human genome. While the association of these microdeletions with epilepsy and other neurodevelopmental disorders including autism, intellectual disability and schizophrenia is well established, the core phenotype of these variants remains elusive, including the question whether such a core phenotype actually exists. In a recent paper in Neurology, Mullen and collaborators zoom in on a possible core phenotype of these microdeletions. The authors investigate a phenotype in which these microdeletions are particularly enriched: generalized epilepsy with intellectual disability. Continue reading

“Meta-channelopathies” – RBFOX1 deletions and human epilepsy

Man is built to seize. When Hughlings Jackson made this famous comment pertaining to the inherent hyperexcitability of the human brain in response to a wide range of different stimuli, he probably didn’t anticipate the mechanisms of splicing regulation. Our CNS is actively protected from hyperexcitability through directed splicing of ion channel mRNA. Now, a recent study in Epilepsia finds that these mechanisms may be dysfunctional in human epilepsy. Continue reading

NRXN1 deletions and the double hit hypothesis of idiopathic epilepsy

Old friends. Structural genomic variants or Copy Number Variations (CNVs) play an important role in many neurodevelopmental disorders including epilepsy, autism, schizophrenia and intellectual disability. Many of the CNVs representing genetic risk factors overlap between these diseases. Now, a recent study in Epilepsia reports on the exon-disrupting deletions in NRXN1 as genetic risk factors for Idiopathic Generalised Epilepsy. NRNX1 deletions were previously reported in several other neurodevelopmental disorders. However, there is an interesting and unanticipated twist to the story. Continue reading

Standing on the shoulders of giants: the EPICURE GWAS on Idiopathic Generalized Epilepsy

Pushing the reset button. The history of epilepsy genetics can broadly be distinguished into two major eras: the time before September 4th, 2012 and everything after this. September 4th, 2012 was the date that the first large genome-wide association study in IGE/GGE was published online in Human Molecular Genetics. Each of the >100 association studies in IGE listed in PubMed is now dated and needs to measure up against the current study, which will likely be remembered as the “EPICURE study”. The results of the EPICURE study are surprising and upset our conventional wisdom of what causes one of the most common forms of epilepsy. Continue reading

Exome study in IGE questions channelopathy concept

IGE and the hunt for rare variants. Idiopathic Generalized Epilepsy (IGE) or Genetic Generalized Epilepsy (GGE) is one of the most common epilepsy subtypes. Family studies and twin studies suggest that genetic factors play an important role. Some families with mutations in GABRG2, GABRA1 and EFHC1 are known, and recurrent microdeletions are found in 3% of sporadic patients. For the majority of patients, the genetic basis remains unknown, but a heterogeneous pattern of rare variants is expected. Much effort is currently spent on genetic studies in IGE including the EuroEPINOMICS CoGIE study. A recent paper now reports the first exome sequencing in IGE to identify rare variants…

Continue reading